460 research outputs found

    Undersea volcano production versus lithospheric strength from satellite altimetry

    Get PDF
    All seamount signatures apparent in the SEASAT altimeter profiles were located and digitized. In addition to locating the seamount signatures, their amplitudes were also estimated. The second phase consisted of determining what basic characteristics of a seamount can be extracted from a single vertical deflection profile. Seven seamounts that had both good bathymetric coverage and good satellite altimeter coverage were used to test a simple flexural model. A method was developed to combine satellite altimeter profiles from several different satellites to construct a detailed and accurate geoid

    Measuring the Lense-Thirring precession using a second Lageos satellite

    Get PDF
    A complete numerical simulation and error analysis was performed for the proposed experiment with the objective of establishing an accurate assessment of the feasibility and the potential accuracy of the measurement of the Lense-Thirring precession. Consideration was given to identifying the error sources which limit the accuracy of the experiment and proposing procedures for eliminating or reducing the effect of these errors. Analytic investigations were conducted to study the effects of major error sources with the objective of providing error bounds on the experiment. The analysis of realistic simulated data is used to demonstrate that satellite laser ranging of two Lageos satellites, orbiting with supplemental inclinations, collected for a period of 3 years or more, can be used to verify the Lense-Thirring precession. A comprehensive covariance analysis for the solution was also developed

    Multistep integration formulas for the numerical integration of the satellite problem

    Get PDF
    The use of two Class 2/fixed mesh/fixed order/multistep integration packages of the PECE type for the numerical integration of the second order, nonlinear, ordinary differential equation of the satellite orbit problem. These two methods are referred to as the general and the second sum formulations. The derivation of the basic equations which characterize each formulation and the role of the basic equations in the PECE algorithm are discussed. Possible starting procedures are examined which may be used to supply the initial set of values required by the fixed mesh/multistep integrators. The results of the general and second sum integrators are compared to the results of various fixed step and variable step integrators

    Guidance methods for low-thrust space vehicles Cumulative progress report, 1 Jan. 1969 - 31 Jan. 1970

    Get PDF
    Guidance and control schemes for optimal low-thrust Earth-Mars transfer mission

    Navigation strategy and filter design for solar electric missions

    Get PDF
    Methods which have been proposed to improve the navigation accuracy for the low-thrust space vehicle include modifications to the standard Sequential- and Batch-type orbit determination procedures and the use of inertial measuring units (IMU) which measures directly the acceleration applied to the vehicle. The navigation accuracy obtained using one of the more promising modifications to the orbit determination procedures is compared with a combined IMU-Standard. The unknown accelerations are approximated as both first-order and second-order Gauss-Markov processes. The comparison is based on numerical results obtained in a study of the navigation requirements of a numerically simulated 152-day low-thrust mission to the asteroid Eros. The results obtained in the simulation indicate that the DMC algorithm will yield a significant improvement over the navigation accuracies achieved with previous estimation algorithms. In addition, the DMC algorithms will yield better navigation accuracies than the IMU-Standard Orbit Determination algorithm, except for extremely precise IMU measurements, i.e., gyroplatform alignment .01 deg and accelerometer signal-to-noise ratio .07. Unless these accuracies are achieved, the IMU navigation accuracies are generally unacceptable

    On the geographical correlation of orbit error

    Get PDF
    The orbit accuracies needed to support the global crustal dynamics project and recent satellite altimeter missions have placed unique demands on the data analysis and orbit analysis systems. These demands include accurate and well distributed observations, improved computational techniques and substantial enhancements in the force models which represent the satellite's motion. For example, the satellite altimeter mission (TOPEX), whose objectives will be: (1) to measure the time variable ocean surface topography, and (2) to demonstrate the ability to map the general ocean circulation, requires that the radial component of the satellite's orbit be known with an rms accuracy of 13 cm for the three year mission lifetime. The primary force model uncertainty which limits the contemporary orbit computation accuracy is the inaccuracy in the values assigned to the spherical harmonic coefficients used to model the Earth's gravity field

    Trajectory optimization using regularized variables

    Get PDF
    Regularized equations for a particular optimal trajectory are compared with unregularized equations with respect to computational characteristics, using perturbation type numerical optimization. In the case of the three dimensional, low thrust, Earth-Jupiter rendezvous, the regularized equations yield a significant reduction in computer time

    Geophysical parameters from the analysis of laser ranging to Starlette

    Get PDF
    The results of geodynamic research from the analysis of satellite laser ranging data to Starlette are summarized. The time period of the investigation was from 15 Mar. 1986 to 31 Dec. 1991. As a result of the Starlette research, a comprehensive 16-year Starlette data set spanning the time period from 17 Mar. 1975 through 31 Dec. 1990, was produced. This data set represents the longest geophysical time series from any geodetic satellite and is invaluable for research in long-term geodynamics. A low degree and order ocean tide solution determined from Starlette has good overall agreement with other satellite and oceanographic tide solutions. The observed lunar deceleration is -24.7 +/- 0.6 arcsecond/century(exp 2), which agrees well with other studies. The estimated value of J2 is (-2.5 +/- 0.3) x 10(exp -11) yr(exp -1), assuming there are no variations in higher degree zonals and that the 18.6-year tide is fixed at an equilibrium value. The yearly fluctuations in the values for S(sub a) and S(sub sa) tides determined by the 16-year Starlette data are found to be associated with changes in the Earth's second degree zonal harmonic caused primarily by meteorological excitation. The mean values for the amplitude of S(sub a) and S(sub sa) variations in J2 are 32.3 x 10(exp -11) and 19.5 x 10(exp -11), respectively; while the rms about the mean values are 4.1 x 10(exp -11) and 6.3(10)(exp -11), respectively. The annual delta(J2) is in good agreement with the value obtained from the combined effects of air mass redistribution without the oceanic inverted-barometer effects and hydrological change. The annual delta(J3) values have much larger disagreements. Approximately 90 percent of the observed annual variation from Starlette is attributed to the meteorological mass redistribution occurring near the Earth's surface

    Altimeter measurements for the determination of the Earth's gravity field

    Get PDF
    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation

    Altimeter measurements for the determination of the Earth's gravity field

    Get PDF
    Progress in the following areas is described: refining altimeter and altimeter crossover measurement models for precise orbit determination and for the solution of the earth's gravity field; performing experiments using altimeter data for the improvement of precise satellite ephemerides; and analyzing an optimal relative data weighting algorithm to combine various data types in the solution of the gravity field
    corecore